# חAmIBIA UחIVERSITY OF SCIEПCE AПD TECHПOLOGY 

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

| QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics |  |
| :--- | :--- |
| QUALIFICATION CODE: 35BAMS | LEVEL: 6 |
| COURSE CODE: NUM701S | COURSE NAME: NUMERICAL METHODS 1 |
| SESSION: $\quad$ JULY 2022 | PAPER: THEORY |
| DURATION: 3 HOURS | MARKS: 100 |


| SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER |  |
| :--- | :---: |
| EXAMINER | Dr S.N. NEOSSI NGUETCHUE |
| MODERATOR: | Prof S.S. MOTSA |

## INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations. All numerical results must be given using 4 decimals where necessary unless mentioned otherwise.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

## PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

## Attachments

None

Problem 1. [21 marks]
1-1-1. Why is the nested form of a polynomial important compared to its canonical (original) form? Give an example illustrating your statement with the number of operations involved (you can use a third degree polynomial of your choice).

1-1-2. Write down a pseudo-code that uses the nested form of a polynomial of degree $n$ and evaluates it at $x=x_{0}$.

1-2. Write down the general formula of the Taylor's expansion (with integral remainder) of a function $f(x)$ about $x=x_{0}$.

1-3 The $n$th root of the number $N$ can be found by solving the equation $x^{n}-N=0$.
1-3-1 For the above equation, show that Newton's method gives:

$$
x_{i+1}=\frac{1}{n}\left[(n-1) x_{i}+\frac{N}{x_{i}^{n-1}}\right]
$$

1-3-2 Use the above result to find $(161)^{1 / 3}$ after three iterations with $x_{0}=6.0$ as the starting point.

Problem 2 [30 marks]
2-1. Write down in details the formulae of the Lagrange and Newton's form of the polynomial that interpolates the set of data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.

2-2. Use the results in 2-1. to determine the Lagrange and Newton's form of the polynomial that interpolates the data set $(0,2),(1,5)$ and $(2,12)$.

2-3. If an extra point say $(4,9)$ is to be added to the above data set, which of the two forms in 2-1. would be more efficient and why? [Don't compute the corresponding polynomials.]

Problem 3. [30 marks]
$3-1$. Determine the error term for the formula

$$
f^{\prime}(x) \approx \frac{1}{2 h}[4 f(x+h)-3 f(x)-f(x+2 h)]
$$

3-2. Use the above formula to approximate $f^{\prime}(1.8)$ with $f(x)=\ln x$ using $h=0.1,0.01$ and 0.001 . Display your results in a table and then show that the order of accuracy obtained from your results is in agreement with the theory in question 3-1.

3-3. Establish the error term for the rule:

$$
f^{\prime \prime \prime}(x) \approx \frac{1}{2 h^{3}}[3 f(x+h)-10 f(x)+12 f(x-h)-6 f(x-2 h)+f(x-3 h)]
$$

Problem 4. [19 marks]
4-1. State the second-order Runge-Kutta algorithm (RK2) in terms of it slopes $k 1$ and $k 2$ (or $f_{1}$ and $f_{2}$ ).

4-2 Explain how the Runge-Kutta method can be used to produce a table of the values for the function

$$
\begin{equation*}
f(x)=\int_{0}^{x} e^{-t^{2}} d t \tag{3}
\end{equation*}
$$

at 100 equally spaced points in the unit interval.
4-3. Use the procedure explained in 4-2. and adapt it to compute $f(0.3)$ using RK2 with three iterations, where this time

$$
f(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

using RK2 to approximate $y(0.3)$ with 3 steps.

## God bless you !!!

